

The influence of the COVID-19 pandemic on the management of pediatric appendicitis; an international multicenter cohort study

CONNECT study

<u>Paul van Amstel¹, MD</u>, Ali El Ghazzaoui², MD, Nigel J. Hall³, MD PhD, Tomas Wester^{4,5}, MD PhD, Francesco Morini⁶, MD, Agostino Pierro², MD PhD, Augusto. Zani², MD PhD, Ramon R. Gorter¹, MD PhD; on behalf of the CONNECT collaborative study group

- 1. Department of Pediatric Surgery, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- 2. Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- 3. University Surgery Unit, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- 4. Department of Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- 5. Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
- 6. Neonatal Surgery Unit, Medical and Surgical Department of Fetus Newborn Infant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy

Disclosures

• No disclosures

Considerable impact of COVID-19 on healtcare systems

Impact of COVID-19 pandemic

- Hospital resources → ICU/COVID-units
- OR capacity

Decrease of pediatric emergency department visits (1st wave)^{1,2}

- Fear for COVID-19?
- Governmental lockdown measures?

Positive results of non-operative treatment of acute appendicitis^{3,4}

More non-operative treatment strategies?

or

- . Neufeld, Surgery, 2021
- 2. Tankel, World J Surg, 2020
- 3. Minneci, JAMA, 2020
- 4. Huang, JAMA Pediatr, 2017

Aim of the study

To investigate:

- The number of patients treated for complex appendicitis versus simple appendicitis
- Changes in treatment and outcomes
 - Surgical vs non-surgical treatment
 - Complications
- Proportion of patients tested for COVID-19

Patients and methods

Multicenter (40 hospitals) comparative cohort study

2019-2020

Children (<18y) treated for acute appendicitis

Non-operative treatment without radiological confirmation of appendicitis

Definitions

Definition of COVID-19 pandemic

- Start date → individually defined by participating centers
- End date = 31st of December 2020

Example: Amsterdam start March 2020

- COVID period: March December 2020
- Non-COVID period: March December 2019

Type of appendicitis

Predefined intraoperative and histopathological criteria

Outcomes and analysis

Outcome measures

- Proportion of patients:
 - treated for complex appendicitis
 - treated non-operatively
 - experiencing a complication
 - tested for COVID-19

Descriptive statistics

Differences in proportions and 95% CI

>8000 patients analysed

2019-2020

N=10604

N=8594

Significantly higher proportion of patients with complex appendicitis during COVID-19

• Difference in proportion of complex appendicitis = 2.7%; 95%CI 0.5-4.8%

Characteristics	Control cohort	COVID-19 cohort	p-value
	(n= 4480)	(n= 4113)	
Severity of appendicitis			0.02
- Simple	2229 (49.7%)	1973 (48.0%)	
- Complex	2017 (45.0%)	1962 (47.7%)	
- Non-inflamed (sana)	220 (4.9%)	168 (4.1%)	
Missing values	14 (0.3%)	10 (0.2%)	

No difference in the proportion of patients treated non-operatively

Ch	aracteristics	Control cohort	COVID-19 cohort	p-value
		(n= 4480)	(n= 4113)	
Tre	>0.05			
-	Non-operative treatment	327 (7.3%)	316 (7.7%)]
-	Operative treatment	4153 (92.7%)	3797 (92.3%)	
Sur	0.02			
-	Laparoscopic	2889 (64.5%)	2748 (66.8%)]
-	Open	1191 (26.6%)	967 (23.5%)	
-	Laparoscopic converted to open	69 (1.5%)	75 (1.8%)	
-	Other	4 (0.1%)	7 (0.2%)	

No difference in complications

Characteristics	Control cohort	COVID-19	<i>p</i> -value
	(n= 4480)	cohort	
		(n= 4113)	
No. of patients with a complication	496 (11.1%)	478 (11.6%)	>0.05
Missing	8 (0.2%)	4 (0.1%)	
Patients with a minor complication (CD I-II)	323 (7.2%)	325 (7.9%)	>0.05
Patients with a severe complication (CD III-IV)	168 (3.7%)	149 (3.6%)	>0.05
Death (CD V)	1 (<0.1%)	1 (<0.1%)	>0.05
Missing	12 (0.3%)	8 (0.2%)	

75.2% of patients were tested for COVID-19

Characteristics	Control coho	rt COVID-19 cohort
	(n= 4480)	(n= 4113)
Patients screened for COVID-19		
- Yes	-	3095 (75.2%)
- No	-	997 (24.2%)
Missing values	-	21 (0.5%)
Test results		
- Test positive	-	71 (1.7%)
- Test negative	-	2998 (72.9%)
- Inconclusive/unknown	-	26 (0.6%)

Limitations

Definition of COVID period

• Possible shift of patients with complex appendicitis

• Partly retrospective cohort

Diagnosis and treatment of pediatric appendicitis was relatively unaffected by the COVID pandemic

Slightly higher proportion of patients with complex appendicitis during COVID-19

No significant difference in proportion of non-operatively treated patients

• Despite the impression that COVID-19 influenced the management of pediatric surgical patients, this was not the case for appendicitis in this large dataset

Thank you for your attention!

Contact details

Paul van Amstel
Emma Children's Hospital, Amsterdam UMC
p.vanamstel@amsterdamumc.nl

