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I: Time to staphylococcus infection during hospital stay

hospital
admission

discharged from the
hospital without

infection

infection in the
hospital

• Etiology (biological question): infection risk in hospital.
What would happen if everyone stayed in hospital?

• Marginal distribution/net risk
• Predict (clinical question): disease burden due to infection

while in hospital; discharge prevents event to occur

• Cause-specific cumulative incidence/crude risk

• Performance when comparing two hospitals may depend
on type of question
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Estimation with complete follow-up (artificial data)

week 0-1 1-2 2-3 3-4 4-5 5-6 6-7 > 7
infection 1 2 6 11 9 11 2 18

cumulative 1 3 9 20 29 40 42 60

discharge 5 9 6 6 9 12 4 35
cumulative 5 14 20 26 35 47 51 86

• Marginal: discharged individuals interpreted as censored.
Kaplan-Meier: represented by the ones that remain in
hospital
• Discharge competing risk: Crude risk estimated as

frequency of events:
P̂(infection ≤6weeks)=40/146

P̂(discharge ≤6weeks)=47/146

Individuals with competing event remain in denominator,
competing event ignored in estimation
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II: Time from HIV infection to AIDS

HIV AIDS

death before
AIDS

• Compare men who have sex with men (MSM) and injecting
drug users (IDU)
• IDUs expected to have faster progression to AIDS

• Data from Amsterdam Cohort Studies: 99 IDU; 127 MSM
• Interest in time to AIDS if there were no pre-AIDS death.

Interest in etiology and marginal distribution
• Kaplan-Meier: leave risk set at death before AIDS

Assumption: deaths represented by those that do not die



Research Questions Rates and Risks Estimation Summary

II: Time from HIV infection to AIDS

HIV AIDS

death before
AIDS

• Compare men who have sex with men (MSM) and injecting
drug users (IDU)
• IDUs expected to have faster progression to AIDS
• Data from Amsterdam Cohort Studies: 99 IDU; 127 MSM

• Interest in time to AIDS if there were no pre-AIDS death.
Interest in etiology and marginal distribution
• Kaplan-Meier: leave risk set at death before AIDS

Assumption: deaths represented by those that do not die



Research Questions Rates and Risks Estimation Summary

II: Time from HIV infection to AIDS

HIV AIDS

death before
AIDS

• Compare men who have sex with men (MSM) and injecting
drug users (IDU)
• IDUs expected to have faster progression to AIDS
• Data from Amsterdam Cohort Studies: 99 IDU; 127 MSM
• Interest in time to AIDS if there were no pre-AIDS death.

Interest in etiology and marginal distribution

• Kaplan-Meier: leave risk set at death before AIDS

Assumption: deaths represented by those that do not die



Research Questions Rates and Risks Estimation Summary

II: Time from HIV infection to AIDS

HIV AIDS

death before
AIDS

• Compare men who have sex with men (MSM) and injecting
drug users (IDU)
• IDUs expected to have faster progression to AIDS
• Data from Amsterdam Cohort Studies: 99 IDU; 127 MSM
• Interest in time to AIDS if there were no pre-AIDS death.

Interest in etiology and marginal distribution
• Kaplan-Meier: leave risk set at death before AIDS

Assumption: deaths represented by those that do not die



Research Questions Rates and Risks Estimation Summary

Kaplan-Meier: IDU much slower progression (p = 0.001)
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Explanation: dependent censoring

• Extra information on cause of death before AIDS
IDU MSM

Reason of death Number
HIV related infections 3 0
overdose/suicide 6 0
violence/accident 2 0
liver cirrhosis 2 0
cancer 0 1
heart attack 0 1
unknown 4 3

• Some causes of pre-AIDS death in IDU related to AIDS
progression. Censoring close to AIDS, hence net risk
estimate for IDU biased downwards

• What if: i) deaths would have developed AIDS right after
• What if: ii) deaths would never have developed AIDS
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i) Combine AIDS and pre-AIDS death
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ii) AIDS-specific cumulative incidence
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ii) AIDS-specific cumulative incidence
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III: Causes of death (COD) after HIV infection

HIV
infection

AIDS
related

liver
related

natural

non-
natural

• Has the spectrum in causes of death changed after the
introduction of cART (combination anti-retroviral therapy)
• Competing risks analysis most interesting

No interest in change in AIDS-related death in world in
which other COD’s do not exist

• Still, different types of analysis can be chosen



Research Questions Rates and Risks Estimation Summary

Cause-specific mortality by calendar period and hepatitis C status
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Beyond classical survival analysis

• Classical: transition between two states, one event type.
“We all die, but not all at the same age”

initial
state

event
time

• Life and death are richer than that
1. Multiple causes of death. Competing risks:

“we all die, but not all at the same age and from the same
cause”

2. Intermediate events. Multi-state model:
“we all die, but not all at the same age, not from the same
cause and with different life histories”

• Two components
• Events/Transitions. Initial, intermediate and final states

• Time. What is the time origin? Multiple time scales?
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Setup and notation

• Competing risks: E ∈ {1, . . . ,K}
• T ∼ F time to event (of any type); F (t) = P(T ≤ t)
• Overall hazard h: P(T > t) = exp{−

∫ t
0 h(s)ds}

• Notation: F (t) = 1− F (t) = P(T > t)

• Cause-specific cumulative incidence:
Fk (t) = P(T ≤ t ,E = k)

• Subdistribution random variable Tk ∼ Fk :
Tk = T × I{E = k}+∞× I{E 6= k}
• P(Tk ≤ t) = P(T ≤ t ,E = k), Fk = 1− Fk = P(Tk > t)
• Subdistribution hazard hk :

P(Tk > t) = exp

{
−
∫ t

0
hk (s)ds

}
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I: The multi-state approach: cause-specific hazard

event
free

cause k

other
causes

λother (t)

λk(t)

• Transition rate to cause k. For continuous distribution:

λk (t) = lim
∆t↓0

P(t ≤ T < t + ∆t ,E = k |T ≥ t)
∆t

• Sum over causes is overall hazard:
∑K

e=1 λe(t) = h(t)
• Cause-specific hazard directly generalizes to multi-state

setting (called transition hazard)
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From hazard to cumulative scale P(T ≤ t ,E = k)

0 s

λk(s)
cause k

other causes

t

P(T ≥ s)

•

Fk (t) = P(T ≤ t ,E = k) =
∫ t

0 F (s−)λk (s)ds
• Depends on all cause-specific hazards via overall

“survival”

F (s) = exp

{
−
∫ s

0
h(u)du

}
= exp

{
−

K∑
e=1

∫ s

0
λe(u)du

}
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II: The subdistribution approach

• Subdistribution hazard
(Tk = T × I{E = k}+∞× I{E 6= k}):

hk (s) = lim
∆s↓0

1
∆s
× P{s ≤ Tk < s + ∆s |Tk ≥ s}

= lim
∆s↓0

1
∆s P{s ≤ T < s + ∆s,E = k}
P{T ≥ s or (T < s,E 6= k)}

• Denominator: event free or with earlier competing event
• Interpretation controversial

• Not a rate in epidemiological sense,
• unless we can assume that those with the competing event

were immune for the event of interest (cure model)

• One-to-one relation with crude risk

Fk (t) =
∏
tl≤t

{
1−hk (tl)

}
or Fk (t) = exp

{
−
∫ t

0
hk (u)du

}
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Rates and risks in competing risks setting

hazard cumulative
competing marginal * net risk *
risks marginal survival function

marginal cumulative incidence
cause-specific λk no corresponding quantity
subdistribution hk crude risk Fk (t)

cause-specific cumulative incidence

combined overall h overall risk F (t)
overall survival function
overall cumulative incidence

* Doesn’t play a role in competing risks analyses; therefore, no notation is
introduced
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Observed data

{(x1,e1δ1), . . . , (xN ,eNδN)}
• xi = min{ti , ci}, δi = {ti ≤ ci}, ei ∈ {1, . . . ,K}
• t(i) ordered unique event times of any type

• r(t(i)) number observed at risk
• r∗(t(i)) number in risk set (for subdistribution hazard)
• dk (t(i)) number of events at t(i) of type k
• d(t(i)) total number of events at t(i)
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Outline

Research Questions
Examples

Rates and Risks
Two approaches to competing risks analysis

Estimation
Multi-state approach
Subdistribution approach
Regression

Summary
Marginal versus competing risks
Which appoach to choose?
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Cause-specific hazard

event free

cause k

other
causes

λother(t)

λk(t)

• Individuals with a competing event are no longer at risk
=⇒ leave the risk set

λ̂k (t(i)) =
dk (t(i))

r(t(i))
.

• Standard rate estimation. Same estimator as marginal
hazard, but different interpretation, unless censoring due to
competing risks is non-informative
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Aalen-Johansen estimator of Fk

• Plug-in estimator based on Fk (t) =
∫ t

0 P{T ≥ s}λk (s)ds:

F̂k
AJ
(t) =

∑
i:t(i)≤t

F̂
PL

(t(i)−)× λ̂k (t(i)) with

λ̂k (t(i)) =
dk (t(i))

r(t(i))
cause specific hazard

F̂
PL

(t(i)−) =
∏

j:t(j)<t(i)

(
1−

d(t(j))

r(t(j))

)
Kaplan-Meier

• With single event type equal to Kaplan-Meier
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Research Questions
Examples

Rates and Risks
Two approaches to competing risks analysis

Estimation
Multi-state approach
Subdistribution approach
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Marginal versus competing risks
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II: The subdistribution approach
• Subdistribution hazard

(Tk = T × I{E = k}+∞× I{E 6= k}):

hk (s) = lim
∆s↓0

1
∆s
× P{s ≤ Tk < s + ∆s |Tk ≥ s}

= lim
∆s↓0

1
∆s P{s ≤ T < s + ∆s,E = k}
P{T ≥ s or (T < s,E 6= k)}

• Denominator: event free or with earlier competing event
• Interpretation controversial

• Not a rate in epidemiological sense,
• unless we can assume that those with the competing event

were immune for the event of interest (cure model)
• One-to-one relation with crude risk

Fk (t) =
∏
tl≤t

{
1−hk (tl)

}
or Fk (t) = exp

{
−
∫ t

0
hk (u)du

}
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Estimation with complete follow-up (artificial data)

week 0-1 1-2 2-3 3-4 4-5 5-6 6-7 > 7
infection 1 2 6 11 9 11 2 18

cumulative 1 3 9 20 29 40 42 60

discharge 5 9 6 6 9 12 4 35
cumulative 5 14 20 26 35 47 51 86

• Marginal: discharged individuals interpreted as censored.
Kaplan-Meier: represented by the ones that remain in
hospital

• Discharge competing risk: Crude risk estimated as
frequency of events:
P̂(infection ≤6weeks)=40/146

P̂(discharge ≤6weeks)=47/146

Individuals with competing event remain in denominator,
competing event ignored in estimation
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Observed data

{(x1,e1δ1), . . . , (xN ,eNδN)}
• xi = min{ti , ci}, δi = {ti ≤ ci}, ei ∈ {1, . . . ,K}
• t(i) ordered unique event times of any type
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Subdistribution F̂k : product-limit estimator

F̂k
PL

(t) =
∏

i:t(j)≤t

{
1− ĥk (t(j))

}
with ĥk (t(j)) =

dk (t(j))

r∗(t(j))

No censoring: individuals with competing event remain in risk
set forever. Small change in data

Administrative censoring: individuals with competing event
leave risk set at date of administrative censoring.

General censoring: Estimate time-to-censoring distribution.
Then for those with competing event:
• multiply impute censoring times
• reweight them by probability to remain uncensored

Left truncation Weights determined by time-to-entry distribution
Internal left truncation ≈ administrative censoring
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Right Censored Data

ĥk (t(i)) =
dk (t(i))

r∗(t(i))

Contribution ωl(t(i)) of individual l to the risk set r∗(t(i)) is:
• censored or event of type k before t(i): 0

• still at risk at t(i): 1
• competing event at t(j) before t(i):

estimate of P{C ≥ t(i)|C ≥ t(j)} :

Γ̂(t(i)−)/Γ̂(t(j)−)

• Γ̂: reverse role of event time Ti and censoring Ci :

Γ̂(t) =
∏

j:c(j)≤t

{
1−

mj

r(c(j))

}
mj : number of censorings at c(j)
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Equivalence

If weights in r∗ based on the PL-form of Γ̂, then we have

F̂k
AJ
≡ F̂k

PL

(Geskus 2011, Biometrics)
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Outline

Research Questions
Examples

Rates and Risks
Two approaches to competing risks analysis

Estimation
Multi-state approach
Subdistribution approach
Regression

Summary
Marginal versus competing risks
Which appoach to choose?
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Regression

• Cause-specific hazards: standard Cox model
• Does account for competing risks
• Interpretation is different: cause-specific event rate among

event-free individuals
• Not a marginal hazard, unless competing risks independent

• Proportional subdistribution hazards model (Fine and
Gray)
• Interpretation: direct relation with cause-specific cumulative

incidence
• Estimation: those with competing event remain in risk set

(with a decreasing censoring weight)
• Example

• AIDS-specific mortality reduced by cART
• Other COD’s: more frequent, even if cART has no side

effects. No change in cause-specific hazard, but
subdistribution hazard increases (“in the end we all die”)

• Subdistribution hazard includes impact on other event types
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Estimators in competing risks setting

hazard estimate cumulative

marginal dk (t)/r(t){= λ̂k (t)}
∏

t(j)≤t

{
1− λ̂k (t(j))

}
cause-specific λ̂k (t) = dk (t)/r(t) F̂k

AJ
(t) =

∑
t(j)≤t

F̂
PL

(t(j)−)λ̂k (t(j))

subdistribution ĥk (t) = dk (t)/r∗(t) F̂k

PL

(t) =
∏

t(j)≤t

{
1− ĥk (t(j))

}
overall ĥ(t) = d(t)/r(t) F̂

PL

(t) =
∏

t(j)≤t

{
1− ĥ(t(j))

}
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Marginal distribution

• Estimated via (marginal) hazard, basis for Kaplan-Meier
estimate of cumulative incidence/net risk
• Assumption: Censored individuals can be represented by

the ones that remain at risk. Reason for censoring should
give no information on residual time-to-event

• Otherwise Kaplan-Meier has no meaning.
Does not describe survival in (hypothetical) world with
competing event removed, unless we know that censoring
is independent
• Extra information may allow to show informative/dependent

censoring (IDU and pre-AIDS death), but independence
can never be tested for
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Competing risks

• Competing risk is a separate event
• Individuals censored by competing event don’t have to be

represented by the ones that remain at risk.
Other censoring (administrative/loss to follow-up) must be
independent

• Cause-specific hazard
• Basis for Aalen-Johansen estimator of cause-specific

cumulative incidence/crude risk

• If censoring due to competing event is independent, then
marginal and cause-specific hazard are equal. Cumulative
quantities different: Kaplan-Meier versus Aalen-Johansen

• Subdistribution hazard: one-to-one relation with crude risk
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overall ĥ(t) = d(t)/r(t) F̂

PL

(t) =
∏

t(j)≤t

{
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AJ
(t) =

∑
t(j)≤t

F̂
PL

(t(j)−)λ̂k (t(j))

subdistribution ĥk (t) = dk (t)/r∗(t) F̂k

PL

(t) =
∏

t(j)≤t

{
1− ĥk (t(j))

}
overall ĥ(t) = d(t)/r(t) F̂

PL

(t) =
∏

t(j)≤t

{
1− ĥ(t(j))

}
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Competing risks

• Competing risk is a separate event
• Individuals censored by competing event don’t have to be

represented by the ones that remain at risk.
Other censoring (administrative/loss to follow-up) must be
independent

• Cause-specific hazard
• Basis for Aalen-Johansen estimator of cause-specific

cumulative incidence/crude risk
• If censoring due to competing event is independent, then

marginal and cause-specific hazard are equal. Cumulative
quantities different: Kaplan-Meier versus Aalen-Johansen

• Subdistribution hazard: one-to-one relation with crude risk
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Outline

Research Questions
Examples

Rates and Risks
Two approaches to competing risks analysis

Estimation
Multi-state approach
Subdistribution approach
Regression

Summary
Marginal versus competing risks
Which appoach to choose?
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Marginal or competing risks?

• Example I: staphylococcus infection in hospital
• Marginal: what if everyone would stay in hospital
• Competing risks: how many infections are observed in

hospital
• Example II: difference in natural history between IDU en

MSM
Marginal analysis
• Example III: spectrum in COD

Competing risks; marginal analysis completely hypothetical
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Etiology or prediction?

• Which hazard quantifies etiology?

Competing risk is:
• intervention: marginal (hospital discharge; IDU/MSM)
• biological: cause-specific (spectrum in COD’s)

• When can we interpret results as effects on marginal
hazards?

• event types independent: cause-specific hazard
• high positive correlation: overall hazard
• cure: subdistribution

• Prediction: subdistribution (based on cause-specific or
subdistribution hazard, but only latter has one-to-one
relation with cumulative probability)
• Both Cox and Fine and Gray model make sense in

presence of competing risks
• Can we use Fine and Gray with time dependent variables?
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Childhood cancer survivors; cardiac event, DOC competing
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The estimates of symptomatic car-
diac events are almost equal. Hence,
death that is not caused by symp-
tomatic cardiac events (DOC) is not
related to having symptomatic cardiac
events.

K̂MCE

F̂CE

F̂DOC
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Answer

• The Kaplan-Meier and the estimator of the CE-specific
cumulative incidence try to estimate different quantities
• Both curves are similar because there is little mortality due

to other causes, at least during the first 20 years, when
most of the CE’s occur.
• Note that on one hand it is said that death due to other

causes may not be related to CE events, whereas on the
other hand it is called “informative censoring”.
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Bladder cancer; relapse, DOC competing
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Bladder cancer; relapse, DOC competing
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The gender difference is also present in
the Kaplan-Meier curves. Moreover, for
both genders the cause-specific cumula-
tive incidence function and the Kaplan-
Meier are almost the same. Hence, the
difference in relapse by gender cannot
be explained by the larger competing
death rates for males.

Grey: KM; black: crude risk
Solid: male; dashed: female
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Answer

• The Kaplan-Meier tries to compare the marginal
distribution of time to relapse for males and females. Only
valid if DOC is noninformative for relapse.
• Estimates almost equal because there is little mortality due

to other causes, at least during the first 40 months.

• If we combine both event times, the curves for males and
females will become similar. Would estimate marginal
hazard if every person that died would have progressed on
the next day.
• All we can conclude is that females have a higher

relapse-specific hazard than males. And females have a
lower DOC-specific hazard than males.
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cART; early versus late starters

failure change interruption
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It may be that individuals interrupt treatment because
they are responding well to therapy, rather than simply
because they are scheduled to do so. In that case, they
would be less likely to fail treatment if they had not inter-
rupted and the marginal hazard ratio of failing treatment
in early vs. chronic infection would be smaller than the
one we report.
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Answer

• Assume that treatment failure and treatment interruption
are the only two competing events
• Most extreme scenario: those who interrupt treatment will

never fail. Marginal hazard same as the subdistribution
hazard, i.e. the reported one.
• It may be true if the effect was observed for the

cause-specific hazard.
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THANKS!
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Part II

Software for competing risks
analyses
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Right Censored Data

Representation Two columns: time since origin and status
variable. status=1 if event observed and status=0 if
event right censored

id time status
1 7.7 1
2 4.3 1
3 5.6 0
...

In R via Surv(time=time, event=status)

Kaplan-Meier Main function: survfit.formula

survfit(Surv(time,status)∼1, data=...)
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Four example individuals

aidssi data set (available in mstate package and in Stata)
patnr time status cause ccr5

14 5.054 0 event-free WW
3 2.234 1 AIDS WW

15 10.196 1 AIDS WM
8 8.605 2 SI WW

Kaplan-Meier both event types combined:

KM.curve <- survfit(Surv(time,status!=0)∼1,
data=aidssi)

Note: event argument can be a logical expression
(status!=0)
Estimate per value of CCR5:

survfit(Surv(time,status!=0)∼ccr5, data=aidssi)
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Numerical summary

summary(KM.curve)

gives:
time n.risk n.event survival std.err lower CI upper CI
0.112 329 1 0.997 0.00303 0.991 1.000
0.137 328 1 0.994 0.00429 0.986 1.000
0.474 325 1 0.991 0.00525 0.981 1.000
0.824 321 1 0.988 0.00607 0.976 1.000

. . . . . . .
12.936 41 1 0.217 0.02604 0.171 0.274
13.361 22 1 0.207 0.02665 0.161 0.266
13.936 1 1 0.000 NaN NA NA

Survival at 12 years obtained via

summary(KM.curve, time=12)
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Plotting Kaplan-Meier survival curves

plot.survfit for first plot;
lines.survfit adds curves

plot.survfit
function(x, conf.int,

mark.time = FALSE, pch = 3,
col = 1, lty = 1, lwd = 1, cex = 1,
log = FALSE, fun,
xscale = 1, yscale = 1, firstx = 0, firsty = 1,
xmax, ymin = 0, xlab = "", ylab = "", xaxs = "S",
conf.times, conf.cap = 0.005, conf.offset = 0.012,
...)

fun="event" plots cumulative incidence (i.e. upwards from 0):

plot(KM.curve, mark.time=FALSE, fun="event")

fun="cumhaz" plots cumulative hazard
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Computer practical

transplant

platelet
recovery

(PR)

acute
GvHD

(AGvHD)

AGvHD
and PR

relapse

death



1. A first look at the data Have a look at the data explanation:
help(ebmt1)
Add columns time and stat.

2. Estimation of overall cumulative incidence Compute the
Kaplan-Meier estimator for relapse-free survival. Plot the
estimate on the scale of the cumulative incidence.
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Software to compute Aalen-Johansen estimator

• Stata: stcompet command
• SAS: macros %CUMINCID

or %CIF
• R, some options:

• standard survival package
• cmprsk or prodlim package
• any package for multi-state models, e.g. etm, mstate,
msSurv
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R: survival package
If event column is numeric:

csiSurv <- survfit(Surv(time,status,type="mstate")∼1,
data=aidssi)

If event column is a factor variable:

survfit(Surv(time,relevel(cause,"event-free"))∼1,
data=aidssi)

Summary of estimate:

summary(csiSurv, times=seq(2,8,by=2))

time n.risk n.event P(1) P(2) P()
2 300 15 0.00632 0.0404 0.953
4 240 52 0.10322 0.1112 0.786
6 170 54 0.17070 0.2259 0.603
8 122 41 0.25430 0.2916 0.454

Confidence intervals: csiSurv$lower and csiSurv$upper



3. Estimation of cause-specific cumulative incidence Compute
the Aalen-Johansen estimator for relapse and relapse-free
mortality. What is the probability, with 95% confidence
intervals (on the default log scale), to have a relapse within
one year and within five years.

4. Some plots (a) Plot the estimated cause-specific cumulative
incidence for each end point using the overlaid display
format. Plot the 95% confidence intervals as well.
(b) Plot the estimated cause-specific cumulative incidence
using the stacked format (without the confidence intervals).
First plot the relapse-specific cumulative incidence, and plot
the death-specific cumulative incidence on top of this curve.
(c) Plot the cause-specific cumulative incidence estimates
for each end point using the alternate display format.
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Outline

Single event type

Multi-state: Aalen-Johansen estimator

Subdistribution: product-limit estimator
Representation of the weights
Creation of the data set with weights
The product-limit estimator
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Creation of the weights; example data

Three individuals from larger data set, “1” event type of interest
id event.time event.type
1 0.63644 0
2 0.64358 1
3 0.25615 2

=⇒

id Tstart Tstop status weight.cens count failcode
1 0.00000 0.63644 0 1.00000 1 1
2 0.00000 0.64358 1 1.00000 1 1
3 0.00000 0.25615 2 1.00000 1 1
3 0.25615 0.31778 2 1.00000 2 1
3 0.31778 0.37693 2 1.00000 3 1
3 0.37693 0.38928 2 1.00000 4 1
3 0.38928 0.46029 2 1.00000 5 1
3 0.46029 0.50979 2 1.00000 6 1
3 0.50979 0.64358 2 0.67849 7 1
3 0.64358 0.64724 2 0.67849 8 1
...

...
...

...
...

...
...

Events of type 1 observed at 0.31778 0.37693 0.38928 0.46029 0.50979 0.64358 0.64724
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Right Censored Data

ĥk (t(i)) =
dk (t(i))

r∗(t(i))

Contribution ωl(t(i)) of individual l to the risk set r∗(t(i)) is:
• censored or event of type k before t(i): 0
• still at risk at t(i): 1
• competing event at t(j) before t(i):

estimate of P{C ≥ t(i)|C ≥ t(j)} : Γ̂(t(i)−)/Γ̂(t(j)−)

• Γ̂: reverse role of event time Ti and censoring Ci :

Γ̂(t) =
∏

j:c(j)≤t

{
1−

mj

r(c(j))

}
mj : number of censorings at c(j)
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Software

Stata stcrprep command
SAS %PSHREG macro

R finegray function in survival package
crprep function in mstate package
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R: create data set with weights

patnr time status cause ccr5
14 5.054 0 event-free WW
3 2.234 1 AIDS WW

15 10.196 1 AIDS WM
8 8.605 2 SI WW

finegray(Surv(time,status,type="mstate")∼.,
data=aidssi, etype=1)

finegray(Surv(time,relevel(cause,"event-free"))∼.,
data=aidssi, etype="AIDS")

crprep(Tstop="time", status="status", data=aidssi,
trans=1, cens=0, keep="ccr5")

aidssi.w <- crprep(Tstop="time", status="cause",
data=aidssi, trans="AIDS", cens="event-free",

keep="ccr5")
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Resulting data set

patnr time status cause ccr5
14 5.054 0 event-free WW

3 2.234 1 AIDS WW
15 10.196 1 AIDS WM

8 8.605 2 SI WW

id Tstart Tstop status weight.cens ccr5 count failcode
3 3 0.000 2.234 AIDS 1.000 WW 1 AIDS

17 8 0.000 8.605 SI 1.000 WW 1 AIDS
18 8 8.605 8.638 SI 0.991 WW 2 AIDS
19 8 8.638 8.755 SI 0.982 WW 3 AIDS
· · · · · · ·

78 14 0.000 5.054 event-free 1.000 WW 1 AIDS
79 15 0.000 10.196 AIDS 1.000 WM 1 AIDS
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PL-form: Kaplan-Meier with probability weights

Stata Specify pweights option in stset command;
use standard sts command

SAS PROC LIFEREG

R weights argument in survfit function
(survival package)
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Example in R

id Tstart Tstop status weight.cens ccr5 count failcode
3 3 0.000 2.234 AIDS 1.000 WW 1 AIDS

17 8 0.000 8.605 SI 1.000 WW 1 AIDS
18 8 8.605 8.638 SI 0.991 WW 2 AIDS
19 8 8.638 8.755 SI 0.982 WW 3 AIDS
78 14 0.000 5.054 event-free 1.000 WW 1 AIDS
79 15 0.000 10.196 AIDS 1.000 WM 1 AIDS

...

survfit(Surv(Tstart,Tstop,status=="AIDS")∼1,
data=aidssi.w, weights=weight.cens)

• Both event types at once (via trans=c("AIDS","SI")):
use
Surv(Tstart,Tstop,status==failcode)∼failcode
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data=aidssi.w, weights=weight.cens)

• Both event types at once (via trans=c("AIDS","SI")):
use
Surv(Tstart,Tstop,status==failcode)∼failcode



Single event type Multi-state: Aalen-Johansen estimator Subdistribution: product-limit estimator

Summarize results

aidssi.w <- crprep(Tstop="time", status="cause",
data=aidssi, trans=c("AIDS","SI"),
cens="event-free", keep="ccr5")

csiPL <- survfit(Surv(Tstart,Tstop,status==failcode)∼failcode,
data=aidssi.w, weights=weight.cens)

csiPL$strata
summary(csiPL["failcode=SI"],times=seq(2,10,by=2))

and obtain
time n.risk n.event survival std.err lower 95% CI upper 95% CI

2 302 13 0.959615 0.0110 0.938344 0.981369
4 272 22 0.888783 0.0177 0.854687 0.924239
6 218 34 0.774112 0.0240 0.728466 0.822619
8 190 18 0.708440 0.0265 0.658364 0.762324
10 161 11 0.665410 0.0279 0.612936 0.722377

or use csiPL[2]



5. Estimation of cause-specific cumulative incidence (PL-form)
Use the crprep function to create the data set with
weights. Include the covariables score and age and also
store the type column in the new data set. Compute the
weights for both end points.
Compare the estimates and confidence intervals at one and
five years with the estimates based on the Aalen-Johansen
form.
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Part III

Time-varying covariables
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Left truncated data: structure

• In calendar time scale

?

date of
“intervention”

3/6/1992

?

date of
study entry

7/8/1995

?

event

11/10/1999

q
calendar time scale

• In patient time scale

?

“intervention”

0

?

study entry
(start at risk)

3.4

?

event
time

7.7

q
patient time scale
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Left truncated data: data representation and analysis

Individuals only contribute while they are in follow-up

• Data: extra column, describing entry time in risk set

id entry time event time status
1 0.0 4.3 1
2 0.0 5.6 0
3 3.4 7.7 1

• In R: Surv(entry.time, event.time, status)
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Two types [Kalbfleisch & Prentice, 2002]

• External: develops independently from disease process
• Defined: all values known at time origin

Examples: calendar period, age
• Ancillary: external process

Example: air pollution.
• Internal: reflects disease process, markers

• Random process
• Exists only as long as the person is alive
• Direct causal relation with event

• Hazard: instantaneous event risk←→
instantaneous covariable value
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Causes of death after HIV infection

HIV
infection

AIDS
related

liver
related

natural

non-
natural

• Has the spectrum in COD changed after introduction of
combination anti-retroviral therapy (cART)?
Two periods: I: ≤ 1996; II: ≥ 1997
• Some individuals HIV infected ≤ 1996, but follow-up in

period II

• Two hazards, cause-specific and subdistribution
• Here: change in spectrum of COD→ subdistribution
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Cause-specific mortality by calendar period and hepatitis C status

HIV and/or AIDS HEPATITIS or LIVER−RELATED NATURAL NON−NATURAL
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Standard setting Competing risks Summary

Single event (overall mortality)

• Counting process representation: split into
pseudo-individuals based on periods with constant
covariable value

id start.time stop.time status cal.period
1 0 6 0 ≤ 1996
1 6 8 1 ≥ 1997

• administrative censoring in 1996: stop.time in 1st row
• enters in risk set “≥ 1997” after 6 years: start.time in

2nd row
similar to late entry/left truncation

“internal left truncation” [Andersen et al, 1993]
“administrative late entry”
• Kaplan-Meier per period: two separate analyses



Standard setting Competing risks Summary

Single event (overall mortality)

• Counting process representation: split into
pseudo-individuals based on periods with constant
covariable value

id start.time stop.time status cal.period
1 0 6 0 ≤ 1996
1 6 8 1 ≥ 1997

• administrative censoring in 1996: stop.time in 1st row
• enters in risk set “≥ 1997” after 6 years: start.time in

2nd row
similar to late entry/left truncation
“internal left truncation” [Andersen et al, 1993]
“administrative late entry”

• Kaplan-Meier per period: two separate analyses



Standard setting Competing risks Summary

Single event (overall mortality)

• Counting process representation: split into
pseudo-individuals based on periods with constant
covariable value

id start.time stop.time status cal.period
1 0 6 0 ≤ 1996
1 6 8 1 ≥ 1997

• administrative censoring in 1996: stop.time in 1st row
• enters in risk set “≥ 1997” after 6 years: start.time in

2nd row
similar to late entry/left truncation
“internal left truncation” [Andersen et al, 1993]
“administrative late entry”

• Kaplan-Meier per period: two separate analyses



Standard setting Competing risks Summary

Kaplan-Meier per period
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Interpretation

• We use ≤ 1996 to provide additional data for ≥ 1997
• Single event type

• Assumption: all individuals ≥ 1997 same death hazard
• K-M estimates for those that remained in single period

• Pseudo-individual approach
• Assumption: all individuals ≥ 1997 same cause-specific

hazard
• Estimate: subdistribution hazard for those that remained in

single period
• Internal approach

• Assumption: all individuals ≥ 1997 same subdistribution
hazard

• Cause-specific hazards differ
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Causes of death after HIV infection

HIV
infection

AIDS
related

liver
related

natural

non-
natural

• Has the spectrum in COD changed after introduction of
combination anti-retroviral therapy (cART)?
Two periods: I: ≤ 1996; II: ≥ 1997
• Some individuals HIV infected ≤ 1996, but follow-up in

period II
• Two hazards, cause-specific and subdistribution

• Here: change in spectrum of COD→ subdistribution
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Observed data

{(v1, x1,e1δ1), . . . , (vN , xN ,eNδN)}
• xi = min{ti , ci}, δi = {ti ≤ ci}, ei ∈ {1, . . . ,K}
• vi entry time (or change in time-varying covariable)
• t(1), . . . , t(n) ordered unique event times of any type
• dk (t(i)) number of events at t(i) of type k
• d(t(i)) total number of events at t(i)

• r(t(i)) number observed at risk

• r∗(t(i)) number in risk set for subdistribution hazard

Covariables Zi(t) = (Zi1(t), . . . ,Zip(t))>
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Aalen-Johansen estimator

F̂k
AJ
(t) =

∑
i:t(i)≤t

KM(t(i)−)× λ̂k (t(i))

KM(t(i)−) =
∏

j:t(j)<t(i)

(
1−

d(t(j))

r(t(j))

)
Kaplan-Meier

λ̂k (t(i)) =
dk (t(i))

r(t(i))
cause specific hazard

• Standard rate estimation
• Individual with competing event leaves the risk set
• Create pseudo-individuals for change in calendar period
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Time-varying covariables and the subdistribution hazard

Question on Researchgate.net, May 2015
Is there any possibility to add time-dependent covari-
ates in the Fine-Gray model?
R1: Time-dependent variables is not possible using
cmprsk/crr. Is there other packages that can do this?

R2: It seems that the inclusion of time-dependent co-
variates in the Fine and Gray model leads to biased
results (Latouche A., Porcher R. & Chevret S. (2005)
and Putter H., Fiocco M. and Geskus R. (2007)).

https://www.researchgate.net/post/Is_there_any_possibility_to_add_time-dependent_covariates_in_the_Fine-Gray_model
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Subdistribution F̂k : product-limit estimator

F̂k
PL

(t) =
∏

i:t(j)≤t

{
1− ĥk (t(j))

}
with ĥk (t(j)) =

dk (t(j))

r∗(t(j))

No censoring: individuals with competing event remain in risk
set forever. Small change in data

Administrative censoring: individuals with competing event
leave risk set at date of administrative censoring.

General censoring: Estimate time-to-censoring distribution.
Then for those with competing event:
• multiply impute censoring times
• reweight them by probability to remain uncensored

Left truncation Weights determined by time-to-entry distribution

Internal left truncation ≈ administrative censoring
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Late entry weights
• Γ̂: reverse role of event time Ti and censoring Ci :

Γ̂(t) = P̂(C > t) =
∏

j:c(j)≤t

{
1−

mj

r(c(j))

}

mj : number of censorings at c(j)
• Left truncation. Entry time Vi ∼ Φ, Φ(t) = P(Vi ≤ t)
• Φ̂: reverse role of Xi = Ti ∧ Ci and truncation time Vi ,

Vi (“event”) is right truncated by Xi :

Φ̂(t) = P̂(V ≤ t) = P̂(−V ≥ −t) =
∏

j:−v(j)<−t

{
1−

wj

r(v(j))

}

=
∏

j:v(j)>t

{
1−

wj

r(v(j))

}
.

wj : number of entries at v(j)
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General product-limit estimator of Fk

F̂k
PL

(t) =
∏

i:t(i)≤t

{
1− ĥk (t(i))

}

ĥk (t(i)) =
dk (t(i))

r∗(t(i))

Weights: contribution ωl(t(i)) of individual l to r∗(t(i)) is
• censored or event of type k before t(i): 0
• still at risk at t(i): 1
• competing event at t(j) before t(i): weight

Γ̂(t(i)−)

Γ̂(t(j)−)
×

Φ̂(t(i)−)

Φ̂(t(j)−)

≈ P̂{C > t(i)|C > t(j)} × 1/P̂{V < t(j)|V < t(i)}
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Two approaches [Geskus, 2015]

id hiv start.time stop.time status cal.period
1 1991 0 6 0 ≤ 1996
1 1991 6 8 3 ≥ 1997
2 1991 0 4 2 ≤ 1996

• Pseudo-individual approach: consider rows as coming
from different individuals. Weights also determined by:
• ≤ 1996: censorings at end of first period
• ≥ 1997: late entries into second period

PL-form equivalent to AJ-form [Geskus, 2011]
• Internal approach: consider rows as continuing follow-up

from same individual
• No time-to-entry weights

Individual 2 also contributes to period ≥ 1997
• Classical situation: unobserved cure as competing event
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Literature

• [Latouche et al, 2005]. Relapse and death after BMT
aGvHD binary internal covariable.
Internal approach. Simulation study, no censoring:
• identifiable path (non-absorbing competing risk): no bias
• non-identifiable path with LOCF: serious bias

• [Beyersmann & Schumacher, 2008]. Death and discharge
in ICU
pneumonia binary internal covariable.
Internal approach.
“stopped covariate process” Z (t ∧ T ). Is same as LOCF
• [Deslandes & Chevret, 2010]. Death and discharge in ICU

SOFA score internal continuous covariable.
Internal approach.
Joint model, using predicted value
Simulation study: good performance.
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ĥ2(8|II) =
20 + 40
75 + 30

=
60

105
=

4
7



1991 1995 1997 1999 2003 2007

50

5

20

5

20
25

λ1=0.1=h1

λ2=0.4=h2

λ1=0.2,
h1=

5
45

λ2 =0.8, h2 = 20
30

100

25

25

10

40
50

λ1=0.25=h1

λ2=0.25=h2

λ 1
=0.2

, h 1
=

10
75

λ
2 =0.8, h2 = 4075

• Pseudo-individual: P̂(V < 6) = 1− 50
75 = 1

3 , P̂(V ≤ 6) = 1
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ĥ1(8|II) =
5 + 10

75 + 3× 20
=

15
135

=
1
9
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5 + 10
75 + 45

=
15

120
=

1
8
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Standard setting Competing risks Summary

Interpretation

• We use ≤ 1996 to provide additional data for ≥ 1997
• Single event type

• Assumption: all individuals ≥ 1997 same death hazard
• K-M estimates for those that remained in single period

• Pseudo-individual approach
• Assumption: all individuals ≥ 1997 same cause-specific

hazard
• Estimate: subdistribution hazard for those that remained in

single period

• Internal approach
• Assumption: all individuals ≥ 1997 same subdistribution

hazard
• Cause-specific hazards differ
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Standard setting Competing risks Summary

Time-varying covariables

• Effect of Z(t) on subdistribution hazard depends on
• Effect of Z(t) on other event types
• History of Z(t)

• Pseudo-individual approach
• Covariables per pseudo-individual all time-fixed
• Aligns cause-specific hazards
• Quantifies subdistribution hazard for constant value of Z(t)

• Internal approach
• Aligns subdistribution hazards
• Problematic for internal covariables

• Cause-specific hazards differ→ no relation with etiology
• Value of covariable after competing event required
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